
Final Report
Crypto Playground: A Computer Security

Learning Tool

Quinton Teas, B.S. Major in Computer Science
Philip Passantino, B.S. Major in Computer Science
Egan Dunning, B.S. Major in Computer Science

Advised by Dr. David A. Wolff

Pacific Lutheran University

Spring 2017

May 25, 2017

1



Contents
1 Introduction 4

2 Functional Requirements 4

3 Non-functional Requirements 4

4 Design 5
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Cryptography Game . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Hash Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Implementation 14
5.1 Agile Development . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Future Work 16
6.1 Regression Line Prediction . . . . . . . . . . . . . . . . . . . . 16
6.2 Encrypt Quote File . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 Finish Implementation of Quadratic Sieve . . . . . . . . . . . 17

Glossary 19

1



List of Figures
1 UML Diagram for the project structure. . . . . . . . . . . . . 6
2 SSD for the cryptogram game. . . . . . . . . . . . . . . . . . . 7
3 Hash function classes overview . . . . . . . . . . . . . . . . . . 8
4 Difference in hash cracking times using 1, 4, and 8 threads. . . 9
5 UML class diagram for the factoring feature . . . . . . . . . . 10
6 SSD for graphing hash cracking results. . . . . . . . . . . . . . 13
7 Screenshot of the Qt Creator Window Builder. . . . . . . . . . 15

2



Abstract

We created a program that teaches its users computer security con-
cepts. The program, a cross platform desktop app built in Qt, explores
security technologies. Users may play a fun cryptogram game, explore
password security with a hash cracking tool, and factor miniature RSA
numbers. Using this application, we can show our users circumstances
where encryption is secure and circumstances where encryption is not
secure. We can also show our users the difference between strong and
weak passwords.

3



1 Introduction
We began this journey nine months ago when we decided to become a team
and design a desktop application. After nine months, we are proud to present
our educational desktop application: Cryptography Playground. There are
three parts that make up Cryptography Playground: the cryptography game,
the hash breaking algorithms, and the factorization methods.

2 Functional Requirements
Cryptogram game Our first requirement is a cryptography computer
game. The cryptography game introduces users to the complex idea of en-
cryption using the concept of a simple cipher.

Hash breaking Our second requirement is reversing Hash Functions. Our
motivation is to test the strength of passwords. The hash breaking algorithms
we chose to implement were brute force and dictionary attack.

Integer factorization Our third requirement is integer factorization. Since
RSA encryption can be broken by factoring a large number, we are interested
in finding quick and efficient ways of factoring integers. We chose to imple-
ment two factoring algorithms: trial division and quadratic sieve.

Multithreading Our final requirement is multithreading. Since hash break-
ing and integer factorization are computationally intensive, we wanted to
speed up these computations by distributing the workload to more than one
thread. This allows machines with multiple CPU cores to be able to crack
hashes and factor numbers faster.

3 Non-functional Requirements
Educational We want this application to give any user easy access to learn
about security methods that exist today. Our cryptogram game was added as
an introduction to ciphers and security. Users then have the option to learn
about more complex topics, such as hash breaking. With the hash breaking
features of our program a user who has no knowledge of hashes can see how

4



hashing works and when hashing is effective at hiding data. Our goal was
for our users to gain information about modern security methods first hand
within the first ten minutes of them opening up the application.

Cross-platform In the interest of sharing our application, we did not want
to limit our program to only one platform, so we made it a goal to only use
technologies that were cross platform. Being able to supply our program
to all three major operating systems is a great way to include most users’
machines given their choice in operating system.

4 Design

4.1 Overview
Crypto Playground has three tabs which separate the three main parts of
the program.

Figure 1 is the UML diagram for Cryptography Playground; dotted lines
show dependency and solid lines show association. Our overall structure
has the MainWindow, which is the controller, and then our three features
are all implemented in the CryptoGame, Crack, Hash, and Factor classes.
Other classes such as LabelArray, ButtonArray, and GraphWindow are all
user interface classes we’ve made to assist our graphical user interface with
displaying graphing information and programming more complicated user
interface designs than the Qt layout designer can perform. Not shown is the
user interface class that is generated from the Qt layout designer.

4.2 Cryptography Game
We needed a way to teach our users about the complex ideas of encryption
and hashing that would not overwhelm them. On the recommendation of Dr.
Wolff, we decided to use a computer game of a cryptogram to achieve this. We
made it our goal to design this cryptography game in such a way as to have
the fun characteristics of the pencil and paper version while simultaneously
adding new features for the players’ convenience.

We kept two main features from the pencil and paper version: multiple
lines and a hint for the player. These features are included in the cryptogram
book "Cryptograms to Keep You Sharp," which we used as inspiration for the

5



Fi
gu

re
1:

U
M
L
D
ia
gr
am

fo
r
th
e
pr
oj
ec
t
st
ru
ct
ur
e.

6



game’s phrases and the game’s hints.[1] The game’s encrypted phrase and
the buttons beneath it span multiple lines. This makes the game window
appear uncluttered for the player. Hints are common on the pencil and
paper versions of cryptograms, so we made sure the player can click a button
to get a hint for the first letter of the phrase.

Figure 2: SSD for the cryptogram game.

Due to the nature of computer games, we added two features not found
in the pencil and paper version of cryptograms: automatic letter marking
and automatic victory checking. When the player makes a guess on a letter,
the game will automatically mark all letters in the phrase that have the same
encrypted letter. Automatic victory checking means the game will check the
guessed phrase after every user input. This allows players to know if they
are correct immediately upon guessing the correct phrase.

4.3 Hash Breaking
In the hashing section of our program, our primary goal was to showcase dif-
ferent hashing methods and how they work. We included a graphing method
to compare the hash breaking times of our separate methods. We also have
a hash breaking method that can attempt to reverse the result of hash func-
tions.

7



Figure 3: Hash function classes overview

We had to import our hashing function implementations from Crypto++,
yet we did not want to reuse large amounts of code when using these meth-
ods that were implemented already. So we created the Hash class which we
made super class to three of the hashing functions that are implemented in
Crypto++. Instead of calling from Crypto++ we instead can now declare a
hash variable and instantiate any of the three hashing implementations. This
also gives us easy access to add more hashing function implementations, in
which case we would add another subclass to Hash for the new implemen-
tation and implement compute() which all subclasses of Hash must have
implemented.

8



Figure 4: Difference in hash cracking times using 1, 4, and 8 threads.

For our brute force hash cracking function, we implemented it so that
multiple threads can be used to reverse a hash. The optimal amount of
threads, determined by Qt’s QThread class, is selected as default. The user
can change the number of threads used to see the performance benefit from
increasing the number of threads.

9



4.4 Factorization
We are interested in factoring large integers because RSA encryption can
be broken by factoring a large integer. The RSA public key is a pair of
integers, the RSA modulus and the public exponent. The RSA modulus, or
RSA number, is a product of two large primes. NIST recommends a RSA
modulus size of 2048 bits or more [2].

Factor

+Factor()

+factor(composite:mpz_class): QPointF

BruteForceFactor

+BruteForceFactor()

+factor(composite:mpz_class): QPointF

QsFactor

+expVectors: map<mpz_class, row>

+QsFactor()

+factor(composite:mpz_class): QPointF

Row

+vec: unsigned long[]

+xVals: vector<mpz_class>

+row()

+operator=(const row&): row&

+operator>(const row&): bool

+operator+(const row&): row&

Figure 5: UML class diagram for the factoring feature

The design for the factorization feature is similar to the hash cracking
design. There is a parent class, Factor, and child classes that inherit from
factor. Child classes override the factor() method, and implement a factor-
ing algorithm. We implemented two factoring algorithms: brute force and
quadratic sieve.

We used the trial division algorithm in the brute force implementation.
Trial division searches for factors of N by dividing N by integers less than or
equal to the square root of N . If a number evenly divides N , it is a factor.
In the worst case, trial division takes

√
N steps. If N has n decimal digits,

the worst case efficiency is 10n/2. This means trial division has exponential
time complexity in the length in digits.

10



The quadratic sieve algorithm is much more complex, but can factor large
numbers faster than trial division. To factor a product of two primes n, the
basic idea is to find integers a, b that satisfy:

1. a2 ≡ b2 mod n

2. a 6≡ ±b mod n

Integers u, v are said to be equivalent mod n if u− v is a multiple of n. We
denote this as u ≡ v mod n. Once a, b are found, then the prime factors of
n are gcd(a+ b, n) and gcd(a− b, n). This idea is the basis for many modern
factoring algorithms [3].

The quadratic sieve is a method for finding a, b that satisfy the above
properties. Look at values of the polynomial Q(x) = x2 − n for integers
x >
√
n. If Q(x1)×Q(x2)× . . .×Q(xk) is a square, then

Q(x1)×Q(x2)× . . .×Q(xk) ≡ x2
1 × x2

2 × . . .× x2
k mod n.

To find a product of polynomials equal to a square, we generate exponent
vectors for each polynomial. Let a be an integer that completely factors up
to prime numbers less than B. We define the exponent vector for a in the
following way.

a =
π(B)∏
i=1

pvi
i

va = (v1, v2, v3, . . . , vk)
The first equality shows the prime factorization for a. The function π(B) is
the prime counting function, its output is the number of primes less than B.
pi is the ith prime, vi is the exponent for the ith prime, and is the ith entry
in the exponent vector for a.

If the exponent vector for a has only even entries, then a is square. To
verify this, suppose va has only even entries. Then

a =
π(B)∏
i=1

p2vi
i =

π(B)∏
i=1

pvi
i

2

. So a is square.

Furthermore, if the exponent vector for a is equivalent to the zero vector mod
2, then a is square. With this fact, we know how to identify square numbers.
To represent the product of integers with an exponent vector, we only need

11



to add the exponent vectors of the factors. If we multiply integers a, b, then
vab = va + vb. Now we have a problem that we can solve using Gaussian
elimination. We can put exponent vectors for values of Q(x) into a matrix
with entries in the set {0,1}. Then use Gaussian elimination to row reduce.
During the Gaussian elimination step, the only operation we need to use is
addition mod 2, denoted +2. We only need to use addition mod 2 because
1 +2 1 = 0, meaning we can reduce rows using only +2. Each vector addition
operation represents multiplying the corresponding integers. Now all zero
rows correspond to a square. This provides us with a congruence of squares
mod n, so we can compute the factors of n using the Euclidean algorithm as
stated above[4].

In our implementation, exponent vectors are stored as a long int array.
Each bit in a long represents an entry of an exponent vector reduced mod 2.
Each exponent vector is stored in the Row class, which represents a row in the
matrix of exponent vectors. The Row class has two attributes, the exponent
vector for Q(x1) × . . . × Q(xk) and a std::vector containing x1, . . . , xk.
When two rows r1, r2 are added, the exponent vectors are added mod 2, and
the x-values for r1 and r2 are put into the same std::vector. Addition mod
2 is done using bitwise XOR for each long in the exponent vector.

4.5 Graphing
For the Hashing and Factorization features, the user can use the included
graphing feature. This graph lets users compare the amount of time our
algorithms would take to crack the hash or factor the given number. We
included a logarithmic scale option for the graph, which makes it easier for
the user to observe a graph with a large range of times.

We used separate classes for data generation and graphing. GenerateData
handles data generation for both factoring and hash cracking. For factoring
data generation, the composites(length, n) method is called. The length
parameter is the length in digits of the first composite number to be included
in the data set. n is the number of composites to include in the data set.
The composites method generates n composites, starting with length dig-
its, and increasing by one digit. Each composite is a product of two primes.
To generate a product of two primes with x digits, pick primes with y and z
digits such that x = y + z + 1. To generate a random prime number with y
digits, randomly generate a string of y digits and ensure that the last digit is
odd. Then, use trial division to check if the number is prime. Trial division

12



is slow, so generating very long prime numbers is impractical. The benefit
of using trial division rather than a probabilistic primality test is that we
can be absolutely sure that each prime number generated is prime. After
composites is finished generating numbers, the factor method is called,
which takes a std::vector of composites and a Factor object as parame-
ters. The factor method records the time taken to factor each composite.
When finished, factor outputs a list of point objects, containing the number
of digits of the number that was factored, and the time taken to factor that
number.

Figure 6: SSD for graphing hash cracking results.

Generating data for hash cracking is similar, first a list of plaintexts are
generated, these plaintexts are hashed, then cracked. Again, the output is
a list of points, where each point contains the length of a plaintext and the
time taken to crack the corresponding hash.

Once the data points are generated, the points can be plotted by the
GraphWindow class, which handles plotting, log scale transformation, axis

13



drawing, legend drawing and title drawing. More points can be overlaid on
the same axes, the color for each line graph is picked from a list of colors in
order to distinguish between two data sets.

4.6 Website
To get a detailed description on how our program works we wanted to pro-
vided a resource for a user to obtain that information without it clogging
the program’s interface. As a group we decided it would be best to put off
all of this information in a website so it would not clutter the program. The
website is a static website that was built from the Express[5] framework us-
ing Node.js[6], and is hosted on Heroku[7]. Aside from the content in the
webpages, and styling using CSS, the most technical aspect of the site is the
routing which we handled through the index.js file.

5 Implementation

5.1 Agile Development
We used the Agile workflow to develop this program. Using Agile method-
ology, we were able to react and adapt to changes in our functional require-
ments without a fundamental redesign. For example, in our initial require-
ments we planned on using OpenCL to speed up hash breaking and factoring.
However, we removed this requirement due to the steep learning curve for
OpenCL. We adapted to this change, and decided to use multithreading to
improve performance instead.

In the Agile methodology, development is done iteratively. During each
iteration, or sprint, the developers go through the planning and implementa-
tion phases of software design. Every iteration should yield working software.
Our sprints were two weeks long. Another aspect of Agile software develop-
ment are stories. A story can be a software feature or other requirement.

Specifically, we followed the Scrum framework. This meant we held regu-
lar stand-up meetings during each sprint where each team member discussed
progress since the last stand up, current task, and any limiting factors. At
the beginning of each sprint, we decided which stories to work on over the
next two weeks. At the end of each sprint, we demoed our progress and
reviewed both completed stories and stories that we were unable to finish

14



during the sprint.

5.2 Tools
We used many tools that we had little experince with to complete this project.
Our code is written in C++ 11 and compiled with gcc. For version control,
we used git, and hosted our repository on Github. Qt provided cross-platform
GUI and multithreading libraries, and the qmake build automation tool[8].
We used the QtCreator IDE for editing code and the GUI. For big integer
handling, we used the GMP library[9]. We used implementations of Hash
Functions provided in the Crypto++ library[10].

Figure 7: Screenshot of the Qt Creator Window Builder.

5.3 Issues
Our team overcame some obstacles while we worked on this project. The
first and most difficult obstacle we tackled was the problem of installing the
GMP and Crypto++ libraries on the Windows and Mac machines. Without
these libraries installed, the Windows and Mac machines could not run the
project. This caused us several months of frustration as we tried and failed
to install the libraries in the proper directories. At the end of January we

15



decided continue developing the project using only the Linux Mint operating
system. The Windows and Mac machines used the Virtual Box software to
run Linux Mint. Switching to Linux solved all of our library problems, but it
also indefinitely postponed our goal of creating a cross-platform application.

We had another problem we needed to overcome: our lack of meeting
times. During fall semester we held our weekly stand up meeting over the
Slack messaging service and met once every other week Sunday afternoon.
This scheduling led to a slow development process and poor communication
over Slack. We decided for spring semester that we needed to meet in person
to work on the project and write code in the same room. We chose to
meet three times every week on Tuesday, Wednesday, and Thursday. This
scheduling, along with switching to using Linux, improved our development
process tremendously.

6 Future Work

6.1 Regression Line Prediction
One of our goals was to use a regression line to predict how long it would take
to factor very large numbers and crack long passwords. This feature would
make the program more useful, since users would be able to get a better idea
of how time consuming factoring and hash breaking can be.

For example, if a user wants to know how long it would take to factor a
2048 bit RSA number using trial division, the user could look at a regression
line to predict how long this operation would take. This is preferable to
letting the program run for years.

We did not have the time to implement this feature, but our design will
be able to accommodate a regression line option for both factoring and hash
breaking.

6.2 Encrypt Quote File
Currently, it is possible for our users to view all of the answers to the quotes
if they look through the application data. Since our application is a security
learning tool it would be good practice to secure our list of quotes from being
seen or accessed.

16



6.3 Finish Implementation of Quadratic Sieve
The current implementation of the quadratic sieve algorithm is not fully func-
tional. There are bugs in the linear algebra step that prevent the algorithm
from finding the prime factors. Our implementation works for small num-
bers, which do not display the speed of the algorithm. The quadratic sieve
is suited for factoring integers that are at least 20 digits long.

Our goal is to be able to compare the running time for brute force and
quadratic sieve. Our prediction is brute force will outperform quadratic
sieve for numbers with fewer than 18 digits. Brute force is very fast for small
numbers, since the algorithm is simple and requires little to no initialization.

17



References
[1] O. Carlton, Cryptograms to Keep You Sharp. New York: Sterling Pub-

lishing Company, Inc., 2002.

[2] E. Barker. “Recommendation for Key Management”, 2016, NIST Special
Publication 800-57 Part 1 Revision 4.

[3] C. Pomerance. (1999, March 8). A Tale of Two Sieves [online]. Available:
http://www.ams.org/notices/199612/pomerance.pdf

[4] C. Pomerance. (2008, April 30). Smooth numbers and the quadratic sieve
[online]. Available: https://math.dartmouth.edu/ carlp/PDF/qs08.pdf

[5] (2017, May 4). Express 4 [online]. Available: https://expressjs.com/

[6] (2017, May 4). Node.js [online]. Available: https://nodejs.org/en/

[7] (2017, May 4). Heroku [online]. Available: https://www.heroku.com/

[8] (2017, May 15). Qt website [online]. Available: https://www.qt.io/

[9] (2016, Dec 19). The GNU Multiple Precision Arithmetic Library [online].
Available: https://gmplib.org/

[10] "Crypto++ R© Library 5.6.5", https://cryptopp.com/

18



Glossary
Agile A software development methodology that focuses on iterative devel-

opment and collaboration. 13

Crypto++ A C++ crypto library. Provides implementations of many en-
cryption algorithms and hash functions. 8, 14

cryptogram A game where the player tries to decrypt a message. The
message is usually encrypted with a substitution cipher. 4

GMP GNU Multiple Precision arithmetic library. Provides a big integer
C++ class interface. 14

GUI Graphical User Interface. 14

Hash Function A hash function is a one way function whose output is
indistinguishable from random. 4, 14

IDE Integrated Development Environment. A single program that handles
many aspects of software development, which could include: compila-
tion, GUI design, debugging tools, and other features. 14

Linux Mint A Ubuntu-based linux distribution. 15

NIST National Institute of Standards and Technology. 10

OpenCL Open Computing Language. A framework for performing com-
putations on a variety of hardware, including field programmable gate
arrays(FPGA) and specialized graphics cards (GPU). More info at
https://www.khronos.org/opencl/. 13

Qt A cross platform graphics API. 9, 14

RSA A public key cryptosystem, invented in 1977. Widely used in internet
security today. 4, 10

Scrum A type of Agile development. 14

19



Slack A messaging application built for team collaboration. 15

SSD System Sequence Diagram. 7, 13

20


