
Hair, Hashing and Birthdays

Egan Dunning
Mathematics / Pacific Lutheran University

March 16, 2017

Abstract

This paper will briefly explain the pigeon-hole principle and its con-
nection to the birthday paradox. We will also examine an algorithm to
find hash function collisions using the birthday paradox.

1 Introduction

We will use the pigeon-hole principle as a starting point to a discussion of hash
functions and the birthday paradox. We will focus on hash function collisions
and how the birthday paradox applies to finding these collisions.

2 The Pigeon-hole Principle

The pigeon-hole principle states that if we have n pigeon-holes and n+1 objects,
and we distribute all objects among the pigeon-holes, then there is a pigeon-hole
with at least two objects. This principle is true for every distribution of objects.
We observe the worst case, that is, an even distribution of the first n objects. So
every pigeon-hole has one object. Now we place the last object in a pigeon-hole.
This pigeon hole has two objects now.

This principle can be used to solve fun problems such as determining if there
exists two women who have the same number of hairs on their head, or if there
are two people in a room who have a birthday on the same day.

3 The Birthday Paradox

The birthday paradox is similar to the pigeon-hole principle, and is related to
the birthday problem above. The birthday paradox answers the question: How
many people do we need in a room in order for the probability of two people in
the room to share a birthday to be 1/2?

The Birthday Paradox. If 23 people are in the same room, there is a one in
two probability that two people share the same birthday.

1



Proof. Let A be the event that 2 people in the room share the same birthday.
Let Ac = 1− A be the event that everyone in the room has a unique birthday.
If there is one person p1 in the room, P (Ac

1) = 1. If another person p2 comes
into the room, the probability that p2 shares a birthday with someone in the
room is P (Ac

2) = 364/365. If person p3 enters the room, P (Ac
3) = 363/365. We

repeat this process for all 23 people. Since events Ac
1, ..., A23c are independent,

P (Ac) = 365/365 ∗ 364/365 ∗ ... =

23∏
i=0

365− i

365

We find P (A) = 1− P (Ac) = 0.507297234324 numerically.

Note that 23 ≈ 1.2 ∗
√

365. We can now generalize the birthday paradox.

Generalization of the Birthday Paradox. If we randomly place 1.2 ∗ 2n/2

items in 2n pigeon-holes, the probability that some pigeon-hole contains 2 items
is 1/2.

An application of this paradox is useful in computer security.

4 Hashing

Hash functions are used in computer security to help determine the authenticity
of messages and data and to verify passwords. A hash function maps an input
of arbitrary size onto a fixed size output, and should not be easily invertible.
We measure the size of the output in bits.

A concrete example of an application of hash functions are checksums. A
checksum is a way to check if two copies of the same file have any differences.
Often websites that host file downloads will also post the file’s checksum, so the
user can check that their copy of the file produces the same checksum. The way
this works is as follows: the file’s owner computes the hash of the file, called
the checksum. The person who downloads the file computes the hash of the
downloaded file. If the checksums match, the downloaded file is correct. If the
checksums don’t match, the downloaded file can’t be trusted.

A cryptographic hash function satisfies the following properties:

• Pre-image resistance. Given h, finding m such that hash(m) = h is diffi-
cult.

• Second pre-image resistance. Given m1, finding m2 such that hash(m1) =
hash(m2) is difficult.

• Collision resistance. Finding unique m1,m2 such that hash(m1) = hash(m2)
is difficult.

2



We won’t look at the first two properties of cryptographic hash functions. But
we can apply the birthday paradox to find hash function collisions. We can
interpret a hash function with n-bit output size (also called digest size) as a
machine that puts inputs into 2n pigeon-holes. So, if we wanted to use the
pigeon-hole principle to find a collision, we would need to try 2n + 1 unique
inputs to guarantee that two inputs are in the same pigeon-hole.

Since popular hash functions have a digest size ranging from 128 to 512 bits,
this method would take a very long time! However, we can reduce the amount
of time to find a collision by applying the birthday paradox.

5 Implementation

We can write a program to test the correctness of the birthday paradox. The
algorithm to find hash collisions is simple:

1. Generate 1.2 ∗ 2n/2 unique strings m1,m2, ...,mk.

2. Compute the hash of each mi, Hash(mi) = hi

3. For each hash pair h1, h2 check h1 = h2.

4. If h1 = h2, output h1, h2 and corresponding m1,m2 where Hash(m1) =
h1.

5. If no collision was found, go to step 1.

I used this algorithm to find collisions for the hashCode() function included
in the java programming language. This function is simple and outputs a java
integer, which is a 32 bit value. Java’s hashCode() is not a cryptographic hash
function, but we will use this function as an example, since finding collisions for
a cryptographic hash function such as SHA1 takes much more computing power,
due to the large (128-bit plus) digest size. In comparison, finding a collision for
java’s hashCode() can be done on inexpensive computers in very little time,
making it ideal for this demonstration.

The collision-finding algorithm is mostly trivial. The hardest part is generat-
ing unique random strings. We have to decide which characters to use and how
long each string should be. In my implementation, I randomized the length
of each string, within a range of 20 to 30 characters. Each character in the
string is chosen randomly from a set of characters including digits, uppercase
letters, lowercase letters and some special characters. This set has 74 elements.
Because of the high variability between each string, we can assume each string
is unique. This saves some computation time because we do not need to check
for uniqueness.

After all the strings are generated, we calculate the hash of each value using
hashCode(). We store the strings and their hash values in separate arrays.

Now we iterate through every value in the array of hashes and look for a
collision. If we use a simple nested loop, we will do extra work, since each pair

3



of hash values will be compared twice. To avoid this extra computation, we can
use the following loop structure:

n = 1.2 * 2^(digest/2)

for i = 0 to n do

for j = i + 1 to n do

if hash[i] = hash[j] do ...

This loop will test equality for each pair of hash values (excluding pair h1, h2)
exactly once, which is ideal.

Something we might be interested in is: how many iterations of the algorithm
must be run in order to find a hash collision? The birthday paradox states that
we have a 1 in 2 chance of finding a collision for every 1.2 ∗ 2n/2 unique random
strings that we test. So, on average, the algorithm should iterate twice to find
a collision. We can test the average number of iterations to find a collision by
running our algorithm many times. After finding 10,000 collisions, the average
number of iterations to find a collision was 1.9513. This is close to 2, so the
birthday paradox is accurate in this case.

6 Next Steps

One way to find hash function collisions is by using the pigeon hole principle -
for each possible hash value, generate a unique string, then compare the hash
values of all of these strings. We have seen an algorithm that can find hash
function collisions more efficiently using the birthday paradox. However, many
parameters in our algorithm can be tweaked.

Will we get a performance increase if we shrink the number of random
strings? This would make each iteration of the algorithm faster, since fewer
comparisons are made per iteration. However, the algorithm will have to repeat
more times, since the chance of finding a collision during one iteration will de-
crease. To find the optimal number of random strings n, we could plot n versus
running time.

Another parameter we can tweak is the string length, and what set of char-
acters we sample from. Do we find collisions faster with a shorter string length?
What about if our strings only contain letters? A more interesting investigation
could use data encapsulated in a file instead of random strings. For example,
generate PDF files, and try to find two PDF files that map to the same hash
value.

There are many things to experiment with. My code (link below) can be
used as a starting point to answering these questions.

7 Application

Another interesting, and more practical, experiment would be to take some fixed
data, for instance a python script, then find another meaningful python script

4



that maps to the same hash value. For example, we could compute the hash of
the fixed file, then generate files with this content:

print "Hello world"

#[random string]

If we can find a collision between the fixed file and the above file, then both files
have the same checksum. So we can have a trusted file that actually shouldn’t be
trusted! Suppose instead of just printing “hello world”, the above file downloads
a virus when the unsuspecting user runs the script! I modified the code I wrote
to find random hash function collisions to do this.

8 Conclusions

The birthday paradox is an interesting extension of the pigeon-hole principle.
Both can be used to find hash function collisions. Here, we used the birthday
paradox to find hash function collisions more efficiently than we can using the
pigeon-hole principle.

Hash functions are used to verify passwords and files downloaded from the
internet. A cryptographic hash function must be collision-resistant, among other
things. We used the hashCode() function, which is included in the java pro-
gramming language, in a demonstration. We found that the birthday paradox
does apply to finding hash function collisions, as expected.

References

[1] Mathematical Vistas, Hilton, Holton, Pederson 2002

[2] Cryptography I, Dan Boneh, https://www.coursera.org/learn/crypto

My code is here: https://github.com/egandunning/birthday-paradox
Includes programs for: finding the product in the birthday paradox proof, find-
ing hash collisions for the hashCode function, finding how many rounds of the
hash collision algorithm requires to find many different collisions, and generating
a collision between two specific python files.

5


